◆因像光 第16卷 第3期

激光等离子体X光谱的高精度测量

马贤平 徐至展 张正泉 陈时胜 郑丹青 (中国科学院上海光机所)

High accuracy measurement of laser induced X-ray spectrum from GaAs Plasma

Feng Xianping, Xu Zhishan, Zhang Zhengquan, Chen Shisheng, Zheng Danching (Shanghai Institute of Optics and Fine Mechanics, Academia Sinica, Shanghai)

提雲: 通过比较各种光谱实验数据的处理方法,本文得到了高精确度的砷化镓 激光等离子体 X 射线光谱,与理论值相比,最大相对误差不超过0.03%。 关键词, X 射线光谱,数据处理

激光等离子体发射的 X 射线(LPX)光 诸的高精度测量是 LPX 光谱学中一项极为 重要的工作,这是因为 LPX 光谱极为复杂, 它不仅有着丰富的共振软 X 射线谱,而且还 存在着大量的各电离级离子的伴线和禁戒跃 迁等,光谱极为密集。故不进行严格的波长 测定,一般很难辨认出各线谱对应的能级跃 迁和电离离子。 其次在进行 LPX 射线诊断 研究中,由于光谱波长的不精确性也会给等 离子体参数的测量带来误差,所以提高光谱 的测量精度很重要。

但是,根据目前常规的LPX 拍摄、辨认 和波长测量结果,发现软 X 射线波长精度一 般都是在0.8% 左右^{CD},精度不高。部分原因 是软 X 射线的位置测量不够精确,另一部分 原因是采用的数据处理方法不适当。为此,考 虑到数据处理一般都是以光谱黑度曲线为基 础的情况,本文先对 LPX 谱的 黑度 扫 描曲 线放大 30 倍后精测它们的相对位置,放大的 目的是为了提高相对位置的测量精度。在此 基础上,通过各种数据处理方法的比较,获得 了高精度的砷化镓 LPX 谱线。

实验是在千兆瓦钕玻璃激光装置上进行 的,其输出功率为 $(2\sim4) \times 10^{9}$ W (能量 5~8 J, 脉宽 2 ns),用口径 ϕ 60 mm、焦距 60 mm 的非球面透镜直接聚焦在真 空度为 5×10⁻² Torr 内的砷化镓平面靶上,靶厚 1 mm,靶面 功率密度约为 4×10¹³ W/em² 量级,LPX 射 线光谱用 TIAP 晶体谱仪拍摄。

图1就是砷化镓的LPX射线光谱,图2 是其相应的黑度扫描曲线。

收稿日期:1988年2月24日。

图 2 砷化镓 LPX 谱黑度扫描曲线

根据等电子序数原子 LPX 射线光谱相 似性特点,可估计出线 1,2,6 号可能是由镓的 类氛离子和砷的类氛离子 1S²2P⁶-1S²2P⁵3S 能级间电子跃迁产生的,假设上述推测是正 确的,则以这些线为特征线,由此根据文献 [2]的常规方法先求出特征值 f:

$$f = \overline{P_1 P_2} \left[\operatorname{ctg} \left(\alpha + \sin^{-1} \frac{\lambda_1}{2d} \right) - \operatorname{ctg} \left(\alpha + \sin^{-1} \frac{\lambda_2}{2d} \right) \right]^{-1}$$

其中 P_1P_2 是波长为 λ_2 和 λ_1 的相对位置, α 是晶面与底片的夹角, 2d是晶格常数。然后 取特征值的平均值 $\sum_{i}^{n} f_i/n$, 作为常数重新代 入上式,即可得到不同位置上的波长, 一般称 这种方法为常规法或一步法。表1例出了利 用上方法得到的结果。

比较实验和理论结果^[33],可看出上述假 设是正确的,但从得到的结果又发现波长精 度并不高,整个光谱域中最大绝对误差为 ±0.004 nm,最大相对误差为0.4% 左右。

为了提高光谱数据处理的精度,本文采 用二步法,第一步类似上方法求各线波长,寻 找出更多的,特别是远离原特征线位置的,可 确定的波长为特征线,在这基础上,重复上述 求波长与位置的关系。用此方法得到的砷化 镓光谱精度有较大的提高(见表 1),其光谱 的最大绝对误差在 ±0.0006 nm 左右,最大 相对误差不超过 0.07%。

不过在这里须指出的是以上所进行的 LPX光谱数据处理都是采用先求参数 *f* 平 均值后再作外推的方法。但是,仔细分析不 难发现上面都是在假定 X 光底片 与晶 面 夹 角 α = 68°度不变为前提的。而事实上,可能 由于暗盒内的底片不平或暗盒本身在晶体谱 仪上没有放好,这就会使参数α值或者说参 数 *f* 成为一个位置函数 *f*(*x*)。为此,采用拟 合法来处理比较适合。先用牛顿幂级数函 数^{G4} 来拟合不同区域或位置上的 *f*₄。由此再

离子	编号	光 谱 项	理论值[3]	常规法 (一步法)	二步法	拟合法 (幂次数n=2)	一步法加拟合法 (幂次数 n=2)	一步法加拟合法 (幂次数等于 4)
镓	1	$2S^{2}2P^{6}-[2P^{5}(^{2}P_{3/2}), 3S]_{1},$	1.0835	1.0835	1.0832	1.0335	1.0835	1.0835
韵	2	$-[2P^{5}(^{2}P_{1/2}), 3S]_{1},$	1.0584	1.0583	1.0586	1.0583	1.0586	1.0583
类	3	$-[2P^{5}(^{2}P_{3/2}), 3d(^{2}D_{3/2})]_{1},$	0.9963	0.9935	0.9970	0.9965	0.9960	0.9965
氖	4	$-[2P^{5}(^{2}P_{3/2}), 3d(^{2}D_{5/2})]_{1},$	0.9842	0.9847	0.9848	0.9843	0.9831	0.8842
漓	5	$-[2P^{5}(^{2}P_{1/2}), 3d(^{2}D_{5/2})]_{1},$	0.9642	0.9636	0.9641	0.9638	0.9628	0.9639
子	7	2822P6-[282763P(2P1/2)]1	0.9078	0.9100	0.9079	0.9080	0.9101	0.9078
GaXXII	8	$-[2S2P^{6}3P(^{2}P_{3/2})]_{1}$	0.9025	0.9080	0.9030	0.9034	0.9061	0.9030
砷	6	$2S^{2}2P^{6}-[2P^{5}(^{2}P_{3/2}), 3S]_{1}$	0.9273	0.9324	0.9272	0.9300	0.9303	0.9273
的举	8	$-[2P^5(^3P_{1/2}), 3S]_1$	0.9031	0.9031	0.9030	0.9034	0.9061	0.9030
氖	9	$-[2P^5(^2P_{3/2}), 3d(^2D_{3/2})]_1$	0.8563	0.8563	0.8562	0.8425	0.8561	0.8558
尚子	10	$-[2P^5(^2P_{3/2}), 3d(^2D_{5/2})]_1$	0.8461	0.8431	0.8467	0.8293	0.8462	0.8463
ASXXIV	11	$-[2P^{5}(^{2}P_{1/2}), 3d(^{2}D_{5/2})]_{1}$	0.8269	0.8342	0.8271	0.7998	0.8251	0.8267

表1 不同数据处理法对应下的砷化镓 LPX 光谱波长(单位 nm)

(下转第134页)

作为比较,我们测量了序列脉冲的最大 倍频和三倍频效率。忽略反射损耗,最大倍 频效率(θ_p =45°)达65%,最大三倍频效率 (θ_p =36°)达到40%以上(图11)。0.3547 μ m 紫外激光的输出能量高达30 mJ,这与理论 计算值接近。

图 12 是条纹相机记录下的光脉冲形状, 倍频光与三倍频光的脉宽相等,都是 45 ps。

图 9 中,上曲线是没有考虑调整误差时 的理论效率曲线,下曲线是考虑了调整误差 以后的曲线,大部分实验测量值都在两曲线 之间,这说明理论预测是成功的。除去图 9, 其余 8、10、11 三图的理论曲线都是采用最 大位相失配角计算的。

重复实验的测量误差主要来自激光器的 波动和晶体的调整误差。理论上和实验中都 证明,和频晶体的调整误差对效率的影响最 大,约为倍频晶体的1倍(图6)。其余调整 误差的影响依次为晶体的转动误差(由于调 整架旋转调节误差最大)、偏振角的调整误差 以及倍频晶体的调节误差,实验表明,表4 精度下的调整架调节和频晶体是比较困难 的。

衷心感谢董景元、陆雨田在脉冲测量以 及其它方面给予的大力帮助; 衷心感谢钱林 兴、赵隆兴在激光电源上给予的大力帮助。

参考文献

- 1 W. Seka et al., Opt. Commun., 34, 474 (1980)
- 2 许伟民,何慧娟,三倍频效率的模拟计算,待发表
- 8 天津大学精仪系,"精密机械零件",下册(人民教育出版 社,1979), p. 121

(上接第152页)

对整个砷化镓 LPX 光谱进行处理(见表 1)。 这里我们已取牛顿最高幂级数n=2。结果分 析发现,在谱特征线之间可得到与理论极 为一致的谱线,它们的绝对误差一般在 ±0.0004nm, 而一旦超出所选用的特征线外 推其它 LPX 光谱线时, 误差明显上升, 如对 砷的类氛离子9号线误差是0.0i4nm, 而到 了11号线最大误差已是0.026nm了。为了 改进拟合法这种缺点,本文也采用了常规法 与拟合法合成的方法,这时会有更多更广的 特征线; 由此得到的光谱参数可看出它已避 免了单用拟合而引起的那种误差发散情况。 整个 LPX 光谱的 误差 是在 0.001 nm 上下 浮动。这结果与二步法比较是不够理想的,且 工作量大。实际上采用上述方法没有提高精 度的原因在于先用了最高幂指数 n=2。如果 提高函数 $f(x) = \sum a_i x^i$ 的幂指数 n 值并使 其与特征线条数相同,则在常规法的基础上

采用牛顿拟合函数f(x)来推断整个砷化镓 LPX 的光谱波长与位置的关系,所得到的光 谱精度大大提高。如当n 值取4时,光谱的 最大绝对误差在 ± 0.0003 nm 之间,最大相 对误差是0.03%。

综合上述各种方法的分析和比较,可得 出一步法比较简单易算,但得到的光谱精度 不高。拟合法虽然在处理上比较繁锁,但只 要幂指数取得适当,精度相当之高。而所谓 二步法是介于上述二种方法之间。因此,在 具体的光谱数据处理中,根据具体的实验要 求可采用不同的方法。

参考文献

- 1 卢仁祥 et al., 科学通报, 24, 1071 (1979)
- 2 张正泉 et al., 原子与分子物理学报, 4, 377 (1987)
- 3 V. A. Bockio et al., J. Quant. Spectrosc. Radiat Transfer., 19, 11 (1978)
- 4 易大义 et al., "数值方法"(浙江科学技术出版社, 1984), p. 113